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Abstract

Predictions of climate variables like precipitation and maximum/minimum temper-
atures play crucial role in assessing the impact of decadal climate changes on regional
water availability. This technical report describes a Graphical User Interface (GUI)
called CMIViz developed as part of the 2016 REU program at UMBC. CMIViz is an
R tool used for exploration and visualization of spatio-temporal climate data from the
Missouri River Basin (MRB). The tool is developed using the R package ‘Shiny’, which
facilitates access on a web browser. Since prediction of precipitation is more challeng-
ing than the prediction of maximum/minimum temperatures, CMIViz provides more
visualization options for precipitation. Specifically, the tool provides an easy inter-
comparison of data from the Global Climate Models (GCM): MIROC5, HadCM3, and
NCAR-CCSM4 in terms of bias relative to the observed data, root mean-squared error
(RMSE), and other measures of interest for daily precipitation. The tool has options
to explore the temporal trends and autocorrelation patterns given a location and spa-
tial patterns using contour plots, surface plots, and semivariograms given a time point.
CMIViz also provides visualization of canonical correlation analysis (CCA) to help find
similarities between the models.

Keywords: Graphical user interface (GUI), Global Climate Models (GCM), Missouri
River Basin (MRB), spatio-temporal analysis, exploratory data analysis (EDA), MIROC5,
HadCM3, NCAR-CCSM4.
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1 Introduction

The Missouri River Basin (MRB) is a vast region spreading across ten U.S. states and
accounting for 28% of the nation’s farmland [14]. The region, shown in Figure 1.11 is
responsible for producing approximately 46% of wheat, 22% of corn, and 34% of cattle
nationwide. Since much of the region is not irrigated, there is significant reliance on rainfall.
This necessitates a need to assess the availability of water. For example, during periods of
drought, soil is more susceptible to wind erosion, which makes the soil lose vital minerals,
thereby hurting the fertility of the region [14]. Therefore, to protect and maintain current
crop yields there is a need to better understand the impact of climate changes on the water
availability in the region [11].

Figure 1.1: The Missouri River Basin is a prominent agricultural region of the United States.

Prediction of maximum/minimum temperatures and precipitation in the MRB was stud-
ied by the 2014 UMBC REU [4] and 2015 UMBC REU [3] teams using simulated data from
two climate models: Hadley Center Coupled Model (HadCM3; [7]) and the Model of Inter-
disciplinary Research on Climate (MIROC5; [17]). They both noted that while predictions
for maximum/minimum temperatures were found to be satisfactory, precipitation was chal-
lenging to predict. Recognizing the need to aid the modeling efforts to predict precipitation
with visualization options to explore various spatial and temporal relationships between the
observed and the data provided by GCMs, CMIViz extends the basic GUI tool developed

1Image from https://en.wikipedia.org/wiki/Missouri_River
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by the 2014 UMBC REU team [4], which was primarily used to help prepare data for model
fitting as opposed to data visualization. We have used the R package ‘Shiny’ [1] to make
CMIViz web-based so that it can be hosted on a website. The tool provides several options
to perform exploratory analysis of spatio-temporal observed and data provided by GCMs.
Specifically, the tool focuses on: 1. inter-comparison of GCMs: MIROC5, HadCM3, and
NCAR-CCSM4 [5] and with the observed data and 2. visualization options to help identify
the underlying spatio-temporal correlations and patterns.

The rest of the report is organized as follows: Section 2 explains the premise and goals
of the project. Section 3 discusses the data source and the GUI implementation in ‘Shiny’.
Section 4 outlines the functionality provided in CMIViz. Section 5 describes possible future
directions for CMIViz.

2 Background

A multi-institute team consisting of the Center for Research on the Changing Earth Sys-
tem (CRCES), Texas A&M University, UMBC-JCET, and the National Drought Mitigation
Center (NDMC), supported by the US Department of Agriculture-National Institute for
Food and Agriculture (USDA-NIFA), have been working on assessing the impacts of decadal
climate variability on water availability and crop yields in the Missouri River Basin [11].
The team from UMBC-JCET have used daily and monthly low resolution data on several
climate variables provided by Global Climate Models (GCM) to build prediction models
for precipitation and maximum/minimum temperatures, which are used as inputs to the
Soil and Water Assessment Tool (SWAT; [6]) to perform hydrological assessment studies in
MRB. Global Climate Models are deterministic mathematical models based on physical laws
of nature and provide simulations of future global climate patterns. Simulated data from
GCMs are often used by statistical methods to forecast climate variables.

Previously, the UMBC REU teams from 2014 [4] and 2015 [3] have developed prediction
methods for precipitation, maximum, and minimum temperatures over MRB using simulated
data from HadCM3 and MIROC5 at the daily and monthly levels, respectively. The REU
team from 2014 also developed a GUI to preprocess the data with some basic visualization
features, which the REU team from 2015 modified for monthly level prediction. Both the
teams noted that while predictions of maximum/minimum temperatures were found to be
satisfactory, predictions of precipitation were not sufficiently accurate, possibly because of its
semi-continuous (point mass at 0) property. Also, the prediction methods for precipitation
used in [4] and [3] are fitted at each location independently and do not explicitly model the
spatial and temporal dependence. A major component of CMIViz is the suite of visualization
options and exploratory data analysis (EDA) for the precipitation data to help explore its
spatial and temporal patterns. As a result, we hope CMIViz would complement the advanced
prediction modeling currently being pursued for precipitation.

EDA is a means of investigating the data, often visually, before performing inferential
statistics or model building [15]. EDA can be used to check key assumptions in traditional
statistical analysis or discover hidden patterns in the data. For instance, in fields like social
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sciences, EDA is often used to determine if the distribution of a parameter of interest is
normal [16]. Unfortunately, EDA is often overlooked before conducting statistical analyses,
resulting in problematic models and conclusions [8]. EDA is particularly relevant for spatio-
temporal data because neighboring observations tend to share certain characteristics [2]. For
example, correlations in space and time violate the traditional assumptions of independent
and identically distributed errors. As a result, people seeking to model spatio-temporal
data could benefit from using EDA to detect correlations within the data before using other
forms of analysis to better ensure the validity of the model. To this end, one of our goals
has been to provide visualization options specifically to explore the semi-continuous nature
of the precipitation data. To better facilitate the inter-comparison of GCMs, we have added
NCAR-CCSM4 to CMIViz in addition to HadCM3 and MIROC5. In order to increase the
reach of CMIViz, we have developed it using the R package ‘Shiny’, which enables the tool
to be accessed on a web browser. For example, it is possible to host CMIViz on the cluster
maya at UMBC and make it accessible on an intranet setup to a restricted audience.

3 Implementation Methodology

3.1 Data

Currently, CMIViz provides visualization of the monthly level data from the GCMs: MIROC5,
HadCM3, and NCAR-CCSM4. The temporal coverage of the data is 1950-2005 and the spa-
tial resolution is 0.125◦(longitude) ×0.125◦(latitude), making it 12km ×12km gridded data.
The geographical region covered is restricted to MRB. Table 3.1 shows the longitude and
latitude bounds of the region for each GCM. Table 3.2 shows the native spatial resolutions
of the GCMs, which are spatially interpolated to the regional resolution of 0.125◦(longitude)
×0.125◦(latitude). The original data for the three GCMs is sourced from the Coupled Model
Intercomparison Project Phase 5 (CMIP5; [13]). The observed precipitation data are pro-
vided by [10]. All the datasets are processed and converted as NetCDF files and are made
accessible to CMIViz at the initialization stage. The climate variables that are available
to analyze on CMIViz are maximum and minimum temperature measured in Kelvin, and
precipitation measured in mm/day. Each GCM typically has several runs of simulations
(predictions) of various climate variables for large time periods. Each such simulation run is
called an ensemble. Our GUI uses an average of all the runs, called an ‘ensemble average’,
as a consensus prediction of the corresponding GCM.

Model
Minimum
Latitude

Maximum
Latitude

Minimum
Longitude

Maximum
Longitude

MIROC5 34.9 50.0 -120 -83.8
HadCM3 32.5 52.5 -124 -82.5
NCAR-CCSM4 34.4 50.4 -121 -83.8

Table 3.1: Latitude and longitude ranges for MIROC5, HadCM3, and NCAR-CCSM4 GCMs.
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MIROC5 HadCM3 NCAR-CCSM4

Number of Latitudes 13 12 31
Latitude Increments 1.4 2.5 .942
Number of Longitudes 27 9 9
Longitude Increments 1.4 3.75 1.25

Table 3.2: Spatial resolutions of MIROC5, HadCM3, and NCAR-CCSM4.

3.2 Visualization Metrics

CMIViz provides several metrics to facilitate inter-comparison of the daily and monthly level
precipitation, maximum/minimum temperatures across the three GCMs and the observed
data. In this section, we describe the metrics relevant to the daily level precipitation data.
Let Ym(s, t) be the observed precipitation, where m is the month, s is the location in the

MRB, and t is the day in the month m. Let X
(p)
m (s, t) be the simulated precipitation from the

chosen GCM (MIROC5, HadCM3, NCAR-CCSM4), where p ∈ {1, 2, 3} indicates the GCM.
Let N be the number of days in the time period of study. Then the number of ‘wet’ days in
the selected time period observed at the location s is given by Nw =

∑N
t=1 I(Ym(s, t) > 0),

where I is the indicator function equal to 1 when Ym(s, t) > 0 and 0 otherwise and the
number of ‘dry’ days in the selected period is Nd = 1−Nw.

The Root mean squared error (RMSE) is a means to quantify the error in the data
provided by the GCM. RMSE is a function of the squares of the differences between the
GCM and the observed values. RMSE of the simulated precipitation at the location s, from
the pth GCM, for the month m is calculated as

RMSE(p)
m (s) =

√√√√ 1

N

N∑
t=1

(X
(p)
m (s, t)− Ym(s, t))2 (3.1)

Another useful measure to quantify the error in the simulated GCM data is ‘bias’, which is
defined as the difference between the GCM and the observed values. Bias of the simulated
precipitation at the location s, from the pth GCM, for the month m is calculated as

BIAS(p)
m (s) =

1

N

N∑
t=1

(X(p)
m (s, t)− Ym(s, t)) (3.2)

The proportion of dry days (no rain) observed at the location s in the month m is calculated
as

DryPropm(s) =
1

N

N∑
t=1

I(Ym(s, t) = 0) (3.3)

The average intensity of the rain, measured for the days it rains at the location s in the
month m is calculated as

Intensitym(s) =

∑N
t=1 Ym(s, t)I(Ym(s, t) > 0)

Nw

(3.4)
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An important feature of the simulated daily precipitation data from the GCMs is that the
data is always strictly positive, that is, there are no dry days in the GCM data. The GCM’s
dry intensity measures the average GCM rainfall for the days when no rain was observed.
At the location s and month m, the dry intensity is calculated as

ModelDryIntm(s) =

∑N
t=1X

(p)
m (s, t)I(Ym(s, t) = 0)

Nd

(3.5)

Similarly, the GCM’s wet intensity at the location s and month m measures the average
GCM rainfall for the days it rained and is calculated as model wet intensity as follows:

ModelWetIntm(s) =

∑N
t=1 X

(p)
m (s, t)I(Ym(s, t) > 0)

Nw

(3.6)

Following are other visualization metrics available for the inter-comparison of GCMs on
CMIViz: correlation between the GCM and the observed data and standard deviations of
the bias and the GCM’s dry intensity measures.

3.3 Implementation and Configuration

CMIViz is implemented in R 3.2.2 software using the package ‘Shiny’. The GUI can be seen
as an implementation of the Model-View-Controller (MVC; [9]) architecture. The package
Shiny facilitates the MVC implementation by providing mechanisms to separate the graphical
presentation to the user and the computational component. The implementation is based
on the communication and interplay between two Shiny files: ui.R and server.R. The ‘user-
interface’ ui.R code determines the interface design and defines the user inputs for the tool.
Every input use case is defined and a suitable mode of selection is configured in ui.R. Every
output component (e.g.: plot) is configured to be generated by an appropriate computational
component in server.R. In other words, server.R contains code to define, generate, and save
each rendered image. The data necessary is subsetted based on the user inputs and then
is rendered as a plot using the code in the server file. See [1] for more details on the GUI
development in R using the ‘Shiny’ package.

CMIViz is currently installed on the cluster maya at UMBC. In order to login to maya
and access CMIViz, the user must have an account through the UMBC High Performance
Computing Facility. Since a web browser is not available on the cluster maya, users must set
up a ‘tunneling’ mechanism by changing the settings in their browser and SSH connection
to maya. For example, if an SSH tool like ‘Putty’ is used, the user should add a forwarding
port (e.g.: 3128) to ‘tunnel’ the web traffic through maya at the specified port. Next,
web browsers on the users’ personal computer must be configured to route the web traffic
via the SSH connection with maya. For example, in Firefox, the user must navigate to
options→Advanced→ Network→Settings. On this page the user must select ‘Manual proxy
configurations’, enter ‘localhost’ for the SOCKS host, port number 3128 for ‘SOCKS v5’ and
save the settings. Under these settings, web activity will be tunneled through maya, so to
revert back to regular internet settings, the connection settings should be set back to ‘no
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proxy’. Once the SSH and browser settings are modified and the user is logged into maya,
CMIViz is ready to be launched. On maya, the user must first navigate to the directory
where the R source code for CMIViz is saved and run the command: source(’runGUI.R’)
in an interactive R session. If successful, this command should show a message similar to
‘Listening on’ followed by an IP address. CMIViz can then be accessed by entering this IP
address into the SOCKS proxy-enabled web browser on the user’s personal computer. Figure
3.1 shows the welcome page of CMIViz.

Figure 3.1: Home screen of CMIViz graphical user interface.

4 CMIViz

The functionalities provided by CMIViz can be broken down into the following categories:

• Inter-comparison of GCMs

• Temporal visualization

• Spatial analysis visualization

• Spatio-temporal visualization

Figure 4.1 shows a screenshot of CMIViz with all the available visualization options expanded
on the menu bar. Appendix A has a listing of all types of visualization features offered by
CMIViz.
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Figure 4.1: Full range of options for each dropdown menu on CMIViz.

4.1 Inter-comparison of GCM Data

Inter-comparison of the GCM data is available under ‘Model Comparison→Comparison
Analysis’, shown in Figure 4.2, menu option on CMIViz. The user can compare the simulated
data from MIROC5, HadCM3, and NCAR-CCSM4 in terms of their accuracy compared to
the observed data. Statistics for model comparison are calculated and then plotted for each
location over a spatial map. These statistical metrics for visualization are described in Sec-
tion 3.2. All the features included in the Model Comparison tab allow the user to select a
model, variable type, and time period.

4.2 Temporal Analysis

CMIViz provides options to perform basic exploratory and visualization analysis of time
series data of a climate variable at a chosen location (latitude, longitude). These visual-
ization options are available under ‘Spatio-Temporal Analysis→ Temporal Analysis’, shown
in Figure 4.3, menu option on CMIViz. The user must select a climate variable, location,
a time period, the GCM models to compare and the type of the visualization. Currently,
the following options are available: time series plots showing the data averaged in time by
month, histograms of the data, periodograms used to identify the dominant frequencies in
the time series, and autocorrelation plots. If two models are selected, the data from both
will be shown on the same plot. See [12] for more details on these time series visualization
objects.
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Figure 4.2: CMIP5 Model Comparison in CMIViz.

Figure 4.3: Time series analysis in CMIViz.

4.3 Spatial Plots

Basic spatial visualization of climate data on CMIViz is available under ‘Spatio-Temporal
Analysis→ Spatial Analysis’, shown in Figure 4.4. As before, the user will be able to select
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a climate variable, a GCM, a time point (e.g.: July 2004) and the type of plots. Currently,
contour and 3-dimensional surface maps are available. Contour maps give an idea on how the
variable of interest is distributed throughout the MRB using a color gradient. A surface map
can be seen as a 3-dimensional extension of the contour map where the variable of interest is
the third dimension. In addition, the user has an option to plot directional semivariograms [2]
of the data at 0◦, 45◦, 95◦, and 135◦ directions. The data is detrended by performing a linear
regression on the latitude and longitude prior to calculating the semivariograms. If the data
are spatially correlated, then the observations closer to one another should have a higher
correlation than those farther apart. The semivariogram reflects this by calculating the
variance of the difference between observations as a function of their euclidean distance.

Figure 4.4: Spatial analysis in CMIViz.

4.4 Spatio-Temporal Analysis

Longitude and latitude space-time plots are available on CMIViz to visualize trends in space
and time simultaneously. These plots can be accessed on CMIViz at the menu option ‘Spatio-
Temporal Analysis→Space-Time Analysis’, as shown in Figure 4.5. The user can subset by
model, variable type, a year range, a range of latitude/longitudes, and the type of the plot.
If the user selects a latitude space-time plot, the data is spatially averaged over the range of
longitudes at each latitude. Figure 4.5 shows latitude and longitude space-time plots of the
precipitation data provided by MIROC5 between years 1950 and 2003. While there seems
to less spatial variability across latitudes as we move from north to south, the longitude
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space-time plot shows much variability in the precipitation as we move from east to west in
MRB.

Figure 4.5: Space-time visualization in CMIViz.

4.5 Canonical Correlation Pattern Analysis

Another feature of the spatio-temporal menu is canonical correlation analysis (CCA2; [2])
as shown in Figure 4.6. In CCA, linear combinations of two datasets are considered so that
the correlation between the two are maximized. The linear combination with the highest
correlation is called the first canonical correlation pattern. Intuitively, CCA determines the
similarity between datasets. When calculating CCA in CMIViz, we compare the user selected
GCM with the observed dataset. However, because CCA is computationally intensive, we
further divide the MRB into three subregions: upper, middle, and lower MRB to reduce the
runtime needed for the calculation. In the CCA plot, the first canonical correlation pattern
is shown for the model and observed data over time as denoted by different colored lines.

5 Future Directions

CMIViz could be enhanced and improved along several areas in the future. Firstly, since
CMIViz is developed using the open source R software and Shiny package, it can be updated
as new versions of R and Shiny are available. Also, future enhancements could benefit from
additional R packages like ‘leaflet’ that are similar to Shiny. Several additional statistical
techniques and visualization options could be added as features to CMIViz. Given the flex-
ible MVC design pattern used in the implementation of CMIViz, adding more features and

2Source code is based on github.com/marchtaylor/sinkr
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Figure 4.6: CCA in CMIViz

options should be straighforward extensions to the code. Another area worth pursuing is
the parallelization of some of the options like calculation of semivariograms in CMIViz. On
a less technical note, CMIViz could be made made more accessible to a wider audience. As
it currently stands, CMIViz can only be run after logging into the UMBC cluster maya.
Therefore, users are required to have an account with the UMBC High Performance Com-
puting Facility in order to use CMIViz. Furthermore, the users must create a SOCKS proxy
using the browser on their personal computers. This procedure to access CMIViz is not
very convenient for a first time user, so an easier way to access could be explored. Future
enhancements to CMIViz could also consider such possibilities as the ‘ShinyIO’ website or
other online options for hosting CMIViz.
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A Complete CMIViz Functionality

CMIViz Model Comparison Plots

Figure A.1: Calculated comparison statistics are bias, root mean squared error, bias standard
deviation, correlation, dry proportion, observed intensity, wet intensity, dry intensity, and
dry intensity standard deviation.
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CMIViz Temporal Plots

Figure A.2: Plots from this tab allow users to compare models over time.
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CMIViz Spatial Maps

Figure A.3: CMIViz features contour maps, surface plots, and semivariograms.

CMIViz Space-Time Plots

Figure A.4: Space-time plots can average by latitude or longitude based upon user selection.
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